If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2+19r=0
a = 1; b = 19; c = 0;
Δ = b2-4ac
Δ = 192-4·1·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-19}{2*1}=\frac{-38}{2} =-19 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+19}{2*1}=\frac{0}{2} =0 $
| 1296=(75*2)(2*l) | | 6b+10/4=7 | | 3x-10x-20=6x+2-13x | | 41+3x+2=360 | | P(x)=150x-x2 | | (6x+15)+(x-8)=168 | | 1/2x+34=50 | | -84=-3(8+4p) | | 18+x/3=9 | | 23/4x=9 | | y=5(6.8 | | F(x)=-5|-4| | | 10+m/3=7 | | 3=1+b/2 | | 4=v/18+3 | | 6/4=a/2 | | -72=6(3x+3) | | 8+5y=7y-2 | | 3(7t-3)=21(t-2)+33 | | 1088=8*8*x | | 10x-23/10x=10x/10x | | 5=10+p/2 | | 0=16x^2+100x+85 | | 12x10=180 | | 10v+8=38 | | 96=x8 | | -84=6(3a-2) | | 3y2-2y+5=-3y(4-y) | | 64j^2-128j+64=39 | | 15b2+21b=0 | | -13.72x^2+23.52x-10=0 | | -8a-13=-4a |